Online Seminar Announcement: Wednesday 5 May 2021

Due to the cancellation of many scientific conferences, the AUCAOS committee is pleased to announce an online seminar series. We intend to run seminars on the first Wednesday of every month until normal conferences can resume.

Date: Wednesday 5 May 2021

Time:
1pm in QLD, NSW, ACT, Vic, and Tas
11am in WA
12:30pm in NT
12:30pm in SA
3pm in New Zealand

Please note different times in some states due to the end of daylight savings time.

Click this link to join the meeting: https://jcu.zoom.us/j/84611488938

Seminar schedule
Each talk is 20 minutes duration followed by approximately 5 minutes for questions and discussion.

Time (QLD time, adjust as needed): Presentation:
1:00 – 1:25pm The Effects of Deposition Technique on Charge and Exciton Dynamics in OLEDs – A Computational Study

Stephen Sanderson
James Cook University & The University of Queensland

Solution-processed OLED films present a number of advantages in cost and scalability over their vacuum-deposited counterparts. However, they currently do not meet the same performance standards, tending to degrade at a faster rate. Towards understanding this, kinetic Monte-Carlo transport modelling combined with molecular dynamics deposition modelling offers a detailed picture of device operation, and allows for the establishment of structure-property relationships that can be difficult to observe through other means. This presentation gives an overview of KMC modelling techniques in the context of phosphorescent OLEDs, along with an outline of techniques developed for building thicker solution-deposited films without the need for prohibitively large initial systems. Using these techniques, a comparison is made between charge and exciton dynamics in solution- and vacuum-deposited OLED films with the goal of gaining insight into the cause of experimentally observed differences in degradation rate.

1:25 – 1:50pm Ternary Strategy and Burn-in Degradation Investigation of Organic Solar Cells

Leiping Duan
The University of New South Wales

Organic solar cells (OSCs) as a low-cost new generation of renewable energy technology have become a promising contender that could serve as an alternative to silicon to established photovoltaic (PV) technologies in the future. Meticulous active layer engineering is a crucial element for OSCs to improve the device performance, where the application of the ternary strategy is an effective pathway. The ternary strategy retains the simplicity of the fabrication for organic solar cells and exhibits a higher potential towards large-scale fabrication. Investigating the novel application of ternary strategy in OSCs is a promising method towards higher device performance. Apart from the pursuit of the device performance, research for the long-term OSCs device stability is also critical for its practical applications and future commercialization. Burn-in degradation has become an ineluctable barrier for OSCs to achieve long-time stability, where an in-depth understanding of the mechanism behind burn-in degradation has become the precondition to conquer this barrier.
The aim of research works in my PhD thesis is to improve the performance of OSCs and provide understandings of its degradation mechanism behind. The ternary strategy, especially incorporated with novel non-fullerene acceptor materials, as a performance improving method, is the primary focal point in this thesis. In this thesis, we derived three novel ternary OSCs and provided a comprehensive investigation of the mechanism behind its performance enhancement. On the other hand, this thesis also systematically investigated the burn-in degradation mechanism in OSCs. We analysed the degradation mechanism based on each instability factor including light, heat, and air, to gain in-depth understating. Moreover, combined with the application of ternary strategy and the burn-in degradation study, we did a case study of the burn-in degradation in the high-efficiency PTB7-Th: COi8DFIC: PC71BM ternary OSCs. We found that the ternary strategy could increase the stability of the device, and the burn-in degradation mechanism in ternary OSCs is more dependent on its dominant binary counterpart. Overall, insights gained in this work into the nature of ternary strategy and burn-in degradation provide a step for OSCs towards large scale application and future commercialization.

1:50 – 2:00pm Open discussion

 

During the seminar:

  • Please keep your microphone muted unless you are speaking. This is to reduce the background noise and avoid disrupting the presenter.
  • You will be automatically muted when you join the virtual meeting room. To speak, you will need to unmute yourself by using the audio controls in the lower left of the Zoom window.
  • If you have not used Zoom before, then it is recommended that you join 5 minutes before the starting time to ensure that you have your software set up correctly.

Please be aware that the talks will be recorded and posted on the AUCAOS website.

Previous seminars

Previous seminars can be viewed here: https://seminars.aucaos.org.au/

Call for abstracts

Seminars are held on the first Wednesday of each month.

In the spirit of building a community in these challenging times, you are encouraged to give a talk. Do you have a talk that you would have given at a conference that was cancelled? Please consider adapting that talk for this format.

Submit abstract by email to bronson[dot]philippa[at]jcu[dot]edu[dot]au.