AUCAOS members awarded research funding by Australian Research Council (Discovery Projects 2022 round 1)

Congratulations to the following AUCAOS members who have recently been awarded Discovery Project funding by the Australian Research Council:

Professor Mats Andersson, Professor Paul Burn, Associate Professor Ivan Kassal, Professor David Lewis, Professor Paul Low, Professor Alan Mark, Professor Dane McCamey, Dr Paul Shaw, Professor Ronald White.

Please see below for further details (AUCAOS members in bold):

Investigator(s) Summary
Professor Mats Andersson; Professor David Lewis Develop materials for stable and efficient printed polymer solar cells. The project aims to develop strategies to overcome current limitations of polymer solar cells by enhancing the thermal stability of these devices. This project expects to generate new knowledge in the area of stable and high-performance polymer solar cells, that can be manufactured by the printing industry in Australia. The expected outcome of this project includes new high performing materials, processing and additive strategies to overcome the key challenge to commercialising polymer solar cells. A significant benefit is their printability, providing the opportunity to establish a sovereign capability to manufacture low cost energy production systems in Australia.
Professor Paul Burn; Professor Alan Mark; Dr Paul Shaw Validation of predicted solution processed organic semiconductor properties. Controlling organic semiconductor film morphology at a molecular level is key to advancing the performance of optoelectronic devices such as large area organic light-emitting diode lighting, solar cells and sensors. The project aims to move from an empirical design cycle of material synthesis, device fabrication and testing to a more predictive approach where morphologies from molecular simulations are used to rationalise differences in experimentally measured optoelectronic properties. Outcomes will include unique insight into atomic-level structural details that determine device efficiency and an understanding of whether atomic simulations can be applied to accelerate improvements in device performance and translation to industry.
Associate Professor Ivan Kassal PCharge and energy transport in disordered functional materials. This project aims to understand how energy and electric charge move through disordered materials. Many next-generation materials—including organic semiconductors, hybrid perovskites, and conductive metal-organic frameworks—promise better solar cells, sensors, and electrocatalysts; however, they remain incompletely understood because they are disordered and noisy systems that are difficult to describe mathematically. This project expects to develop the first theoretical techniques that capture all essential features of transport in disordered materials. The resulting understanding of structure-function relationships should accelerate the rational design of cutting-edge devices for energy conversion and storage.
Professor Paul Low; Professor Colin Lambert; Professor Richard Nichols Molecular Thermoelectric Materials: A New Hot Topic. This project aims to use the principles of chemistry and molecular electronics to synthesize and study molecules able to directly convert waste heat into electricity through the Seebeck effect. This project expects to generate new knowledge concerning the wire-like properties of molecules and conditions that lead to a high Seebeck coefficient, together with interference effects to suppress thermal conductance. Expected outcomes of this project include a deeper understanding of chemical structure – molecular electronic property relationships, and enhanced international collaboration with the UK. This should provide benefits in terms of low-cost conversion of waste heat to electrical energy.
Emeritus Professor Alan Mark; Dr Martin Stroet; Professor Chris Oostenbrink; Professor Gunnar Klau Enhanced force fields for computational drug design and materials research.. This project aims to improve the atomic interaction functions used to calculate the structural, dynamic and thermodynamic properties of molecules that alter net charge or structure in different environments. Predicting the stability of alternative protonation and tautomeric states for molecules bound to therapeutic targets is a major challenge in computational drug design. It is key to identifying the therapeutically active chemical species as well as understanding drug transport and off-target effects. The work will expand the utility of modelling software used by over 13,000 researchers worldwide. In addition, the improved interaction functions will also help in the understanding of a wide range of other materials at an atomic level.
Professor David Jamieson; Professor Dane McCamey; Professor Richard Curry Synthesis of enriched silicon for long-lived donor quantum states. We have discovered a method to make silicon highly enriched in the desirable spin-zero isotope using readily available ion implantation tools. This “semiconductor vacuum” is essential for building future quantum computer devices using the quantum spin of millions of implanted atoms with revolutionary capabilities. We have demonstrated long-lived implanted donor atom quantum states in prototype material, made possible by the depletion of background spins in natural silicon and now aim to push the enrichment to greater extremes. We will integrate the extreme material into functional devices that use electrically detected electron spin resonance to probe exceptionally durable quantum states and open a near-term pathway to large-scale devices.
Professor Ronald White; Professor Michael Brunger; Professor Mark Kushner; Dr Yang Liu Non-equilibrium presolvation electron processes at the gas-liquid interface. The interaction of low-temperature plasma electrons with liquids has served as a reducing agent in various technological applications in water treatment, agriculture, biofuels and medicine. Predictive control of the plasma-liquid interface is essential to unlocking the potential of these applications, and this has been limited by the absence of the relevant non-equilibrium transport theory describing electrons at the plasma-liquid interface together with fundamental data describing electron interactions with liquids. The project will develop a state of the art presolvation electron transport model informed by world first measurements of electron cross-sections for radicals and liquids and apply it to model plasma electrochemistry processes.